Attribute Reduction Algorithm for Incomplete Information Systems Based on Intuitive Fuzzy Pairs
نویسندگان
چکیده
The current attribute reduction algorithms for information systems are difficult to handle imbalanced data with default values. Therefore, address the shortcomings of traditional (ARAs) in incomplete systems, a new algorithm is proposed by introducing intuitive fuzzy pairs (IFP). In addition, composite minority oversampling technique TampC and Central Limit SMOTE (TampC-CL-SMOTE) improve pre-data sampling method algorithm, its effectiveness verified experiments. experimental results show that average classification accuracy improved on naive Bayes classifier 82.13%, support vector machine 86.48%. comparison operational efficiency, running time 5.92 seconds, overall consumption lower than algorithm. Meanwhile, accuracy, recall, F-measure 76.14%, 78.35%, 77.19%, respectively. G-means TampC-CL-SMOTE 2.9% 5.3% higher Overall, has high efficiency handling data, while optimization practical applications advantages low environments.
منابع مشابه
Attribute Reduction in Incomplete Information Systems
Through changing the equivalence relation of objects to reflexive and symmetric binary relation in the incomplete information system, a cumulative variable precision rough set model is proposed. The basic properties of β lower and β upper cumulative approximation operators are investigated. β upper, and β lower distribution consistent set are explored for defining β upper, and β lower distribut...
متن کاملdesigning unmanned aerial vehicle based on neuro-fuzzy systems
در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...
A Continuous Information Attribute Reduction Algorithm Based on Hierarchical Granulation
The attribute reduction algorithms based on neighborhood approximation usually use the distance as the approximate metric. Algorithms could result in the loss of information with the same distance threshold to construct the neighborhood families of different dimension spaces. Thereby, an attribute reduction algorithm based on hierarchical granulation is proposed. This algorithm can reduce redun...
متن کاملGeneralized Discernibility Function Based Attribute Reduction in Incomplete Decision Systems
A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditiona...
متن کاملAttribute Reduction on Distributed Incomplete Decision Information System
Attribute reduction is an important issue in rough set theory. This paper mainly studies attribute reduction of distributed incomplete decision information system (DIDIS). Firstly, the definition of rough set in DIDIS is developed. Next, an algorithm for attribute reduction of DIDIS is proposed. In the end, two groups of experiments are conducted to prove the effectiveness of the proposed metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3302527